Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Surg ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742847

RESUMO

BACKGROUND: With the antibiotic crisis, the topical antibacterial control including chronic wounds gains increasing importance. However, little is known regarding tolerance development when bacteria face repetitive exposure to the identical antiseptics as commonly found in clinical practice. MATERIALS AND METHODS: We exposed clinical isolates foremost of chronic wounds in vitro to dilutions of two antisepctics used for wound therapy: polyhexanide or octenidine. Adaptive response was determined by growth/kill curves, minimal inhibitory concentration (MIC), and whole genome sequencing. Antiseptic/bacteriophage combinations were studied by liquid-infection assays and bacterial plating. RESULTS: Polyhexanide acted stronger against Escherichia coli and Proteus mirabilis while octenidine was more potent against Staphylococcus aureus. Otherwise, the antiseptic efficacy varied across isolates of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Upon repetitive exposure with constant antiseptic concentrations P. aeruginosa and P. mirabilis adaptation was evident by a reduced lag-phase and a two-fold increased MIC. Under increasing octenidine concentrations, P. aeruginosa adapted to an eightfold higher dosage with mutations in smvA, opgH and kinB affecting an efflux pump, alginate and biofilm formation, respectively. S. aureus adapted to a fourfold increase of polyhexanide with a mutation in the multiple peptide resistance factor MprF, also conferring cross-resistance to daptomycin. Antiseptic/bacteriophage combinations enhanced bacterial inhibition and delayed adaptation. CONCLUSION: Different bacterial species/strains respond unequally to low-level antiseptic concentrations. Bacterial adaptation potential at phenotypic and genotypic levels may indicate the necessity for a more nuanced selection of antiseptics. Bacteriophages represent a promising yet underexplored strategy for supporting antiseptic treatment which may be particularly beneficial for the management of critical wounds.

2.
Curr Issues Mol Biol ; 46(2): 1424-1436, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38392210

RESUMO

Adipose stem cells (ASCs) have multilineage differentiation capacity and hold great potential for regenerative medicine. Compared to bone marrow-derived mesenchymal stem cells (bmMSCs), ASCs are easier to isolate from abundant sources with significantly higher yields. It is generally accepted that bmMSCs show age-related changes in their proliferation and differentiation potentials, whereas this aspect is still controversial in the case of ASCs. In this review, we evaluated the existing data on the effect of donor age on the osteogenic potential of human ASCs. Overall, a poor agreement has been achieved because of inconsistent findings in the previous studies. Finally, we attempted to delineate the possible reasons behind the lack of agreements reported in the literature. ASCs represent a heterogeneous cell population, and the osteogenic potential of ASCs can be influenced by donor-related factors such as age, but also gender, lifestyle, and the underlying health and metabolic state of donors. Furthermore, future studies should consider experimental factors in in vitro conditions, including passaging, cryopreservation, culture conditions, variations in differentiation protocols, and readout methods.

3.
Exp Cell Res ; 435(1): 113908, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163565

RESUMO

The endocannabinoid anandamide (AEA) stimulates adipogenesis via the cannabinoid receptor CB1 in adipose stromal cells (ASCs). However, AEA interacts also with nonclassical cannabinoid receptors, including transient receptor potential cation channel (TRPV)1 and G protein-coupled receptor (GPR)55. Their roles in AEA mediated adipogenesis of human ASCs have not been investigated. We examined the receptor-expressions by immunostaining on human ASCs and tested their functionality by measuring the expression of immediate early genes (IEGs) related to the transcription factor-complex AP-1 upon exposition to receptor agonists. Cells were stimulated with increasing concentrations of specific ligands to investigate the effects on ASC viability (proliferation and metabolic activity), secretory activity, and AEA mediated differentiation. ASCs expressed both receptors, and their activation suppressed IEG expression. TRPV1 did not affect viability or cytokine secretion. GPR55 decreased proliferation, and it inhibited the release of hepatocyte growth factor. Blocking GPR55 increased the pro-adipogenic activity of AEA. These data suggest that GPR55 functions as negative regulator of cannabinoid mediated pro-adipogenic capacity in ASCs.


Assuntos
Adipogenia , Ácidos Araquidônicos , Endocanabinoides , Humanos , Endocanabinoides/farmacologia , Receptores de Canabinoides , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Células Estromais/metabolismo
4.
FASEB J ; 38(1): e23352, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095340

RESUMO

Inter-α-trypsin inhibitor heavy chain 5 (ITIH5) is widely expressed in the human body, and it is detected to be particularly abundant in adipose tissue. ITIH5 expression is increased in people with obesity compared to lean persons and is decreased by diet-induced weight loss. This suggests that ITIH5 may be involved in the development of adiposity and clinical metabolic variables, although its exact function remains unknown. We measured the protein concentration of ITIH5 in adipose samples from patients undergoing abdominoplasty and tested for correlation with the subjects' BMI as well as inflammatory mediators. We stimulated human adipose stem cells (ASCs) with recombinant (r)ITIH5 protein and tested for an effect on proliferation, differentiation, and immunosuppressive properties when the cells were exposed to an artificial inflammatory environment. We found positive correlations between ITIH5 levels and the BMI (p < .001) as well as concentrations of inflammatory cytokines (TNF-α, IL-6, and MCP-1) in adipose tissue (p < .01). Application of the rITIH5 protein inhibited both proliferation (p < .001) and differentiation of ASCs. Especially, the development of mature adipocytes was reduced by over 50%. Moreover, rITIH5 decreased the release of IL-6 and MCP-1 when the cells were exposed to TNF-α and IL-1ß (p < .001). Our data suggest that ITIH5 is an adipokine that is increasingly released during human adipose tissue development, acting as a regulator that inhibits proliferation and adipogenic differentiation of ASCs. ITIH5 thus presents itself as a positive regulator of adipose tissue homeostasis, possibly protecting against both hyperplasia and hypertrophy of adipose tissue and the associated chronic inflammation.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Humanos , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adipogenia , Fatores Imunológicos/farmacologia , Células-Tronco/metabolismo , Proliferação de Células , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/farmacologia
5.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139127

RESUMO

As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic ob/ob and db/db mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm2). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-ß1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future.


Assuntos
Dieta Hiperlipídica , Fator de Necrose Tumoral alfa , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/farmacologia , Camundongos Endogâmicos C57BL , Cicatrização , Colágeno/metabolismo , Camundongos Endogâmicos , Citocinas/farmacologia , Obesidade
6.
J Plast Reconstr Aesthet Surg ; 87: 408-415, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939646

RESUMO

INTRODUCTION: Local anesthetics (LAs) are routinely administered in plastic and reconstructive surgery, e.g., as tumescent anesthesia adjunct in liposuction. Historically, these substances were assumed to act cytotoxically. Thus, the application of LA was avoided when handling adipose stem cells (ASCs). We recently determined that most LAs are not cytotoxic when ASCs are exposed to concentrations used for tumescent liposuction. However, there is limited information when combining LA with epinephrine and about the effects of prilocaine on ASCs. METHODS: We analyzed the effects of prilocaine or lidocaine in co-exposure with epinephrine on the viability of primary human ASCs, i.e., proliferation, metabolic activity, and cytotoxicity, using crystal violet-staining, PrestoBlue®-, and WST-1 assay. We quantified the impact of short-term incubation of lidocaine and epinephrine on the differentiation of ASCs into the adipogenic, chondrogenic, and osteogenic lineage. RESULTS: After 2 h, prilocaine (10 mM) significantly reduced metabolic activity and cell numbers, whereas lidocaine only inhibited metabolic activity. After 6 h, prilocaine (10 mM) and lidocaine significantly decreased metabolic activity as well as cell numbers. The application of high concentrations of epinephrine did not affect cell numbers but diminished metabolic activity. Combining lidocaine with epinephrine had no additional cytotoxic effect. Differentiation into the chondrogenic lineage was significantly inhibited by epinephrine. CONCLUSIONS: Deducing from our data, neither lidocaine combined with epinephrine nor prilocaine has a cytotoxic impact on ASCs in vitro at concentrations equivalent to those in tumescent anesthesia and has no long-lasting effect on the differentiation capacity of ASCs into the osteogenic and adipogenic lineage.


Assuntos
Lidocaína , Prilocaína , Humanos , Lidocaína/farmacologia , Prilocaína/farmacologia , Anestésicos Locais/farmacologia , Epinefrina/farmacologia , Anestesia Local , Diferenciação Celular , Células-Tronco
7.
Plast Reconstr Surg ; 152(5): 850e-861e, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988627

RESUMO

BACKGROUND: Adipose stem cells (ASCs) hold a great regenerative capacity because of their differentiation capability and their secretory activity. Thus, ASC survival is of great significance during perioperative harvesting. Various local anesthetics are commonly applied during fat grafting procedures. These substances are known to impair cellular viability, which would affect graft survival and final outcomes, but the exact extent of their impact on ASC biology is unknown. METHODS: The authors analyzed the short- and long-term effects of lidocaine, mepivacaine, ropivacaine, and bupivacaine at increasing concentrations (0.1 to 10 mM) on primary human ASC proliferation and metabolic activity. Trilinear differentiation was assessed by oil red O stain (adipogenesis), safranin O (chondrogenesis), and cresolphthalein (osteogenesis) labeling. In supernatants, cytokine [interleukin (IL)-6/IL-8, vascular endothelial growth factor, hepatocyte growth factor] secretion was analyzed by enzyme-linked immunosorbent assay. RESULTS: Bupivacaine at greater than 100 µM demonstrated the strongest anti proliferative effects, whereas lidocaine and ropivacaine did not affect cell numbers. Mepivacaine evoked reciprocal results regarding cell count at greater than 1 mM. Each compound impaired trilinear differentiation. Secretion of hepatocyte growth factor and IL-8 was reduced significantly by local anesthetic exposure; levels were restored after substances were washed out. CONCLUSIONS: In vitro data show that lidocaine, mepivacaine, and ropivacaine could be applied at concentrations of 1 to 10 mM without affecting ASC survival. In contrast, bupivacaine at concentrations greater than 100 µM should be administered with great caution. The differentiation of ASCs and the ASC's secretome might already be decreased by each local anesthetic at 1 mM. CLINICAL RELEVANCE STATEMENT: The authors' experimental data can be of great significance to the clinical practice, as local anesthetics are routinely administered during liposuction as a tumescent anesthesia adjunct. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Assuntos
Anestésicos Locais , Mepivacaína , Humanos , Anestésicos Locais/farmacologia , Ropivacaina/farmacologia , Mepivacaína/farmacologia , Fator de Crescimento de Hepatócito , Interleucina-8 , Fator A de Crescimento do Endotélio Vascular , Bupivacaína , Lidocaína/farmacologia , Células-Tronco , Amidas
8.
Neurosci Res ; 190: 78-84, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36470474

RESUMO

The rat sciatic nerve (SN) is the most frequently used model in experimental research on peripheral nerve injuries. Within the broad range of evaluation methods to determine the experimental outcome, recovery of behavior represents the major criterion to assess functional regeneration. The grasping test indicates when recovery begins and its improvement with time. However, lesions of the SN have yet remained unstudied with this method. Therefore, rats received a SN resection and were divided into experimental groups: 1) control with lesion only, 2) nerve bridge, and 3) autograft. During weekly sessions, the grasping test measured the grip strength, and the locomotor behavior was assessed in the open field. Finally, the nerves were prepared for electrophysiology and histomorphometry. Autograft recovered grasping after 7 weeks with the strongest improvement afterwards. Nerve tube allowed grasping by week 12. Control animals did not recover. In the open field, no differences were observed between the groups. Recordings were possible only in the autograft group, which could be explained by higher number of regenerated fibers. This study indicates that grasping data correspond with physiological and anatomical findings. We conclude that the grasping test is a valid method to evaluate functional recovery after SN resection in rats.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Ratos , Animais , Regeneração Nervosa/fisiologia , Nervo Isquiático/patologia , Locomoção/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Força da Mão , Recuperação de Função Fisiológica/fisiologia
9.
Cell Biochem Funct ; 41(2): 202-210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36576019

RESUMO

Lipomas are slow growing benign fat tumors that develop in soft tissues of the mesoderm. Thus, the specific (dys-)function of mesenchymal stem cells (MSCs) has been suggested in the development of lipomas, but details of the tumor pathogenesis remain unclear. Existing studies comparing stem cells from native adipose (adipose stem cells [ASCs]) and lipomatous tissues (LSCs) have reported contradicting findings. However, harvesting ASCs and LSCs from different individuals might have influenced proper comparison. Therefore, we aimed to characterize donor-matched ASCs and LSCs to investigate metabolic activity, proliferation, capability for tri-linear differentiation (chondrogenesis, adipogenesis, osteogenesis), and the secretome of mature adipocytes and lipomacytes. Both stem cell types did not differ in metabolic activity, but ASCs demonstrated stronger proliferation than LSCs. While there was no difference in proteoglycan accumulation during chondrogenic differentiation, adipogenesis was higher in ASCs, with more lipid vacuole formation. Conversely, LSCs showed increased osteogenesis by higher calcium deposition. Lipomacytes showed stronger secretory activity and released higher levels of certain adipokines. Our findings indicated that LSCs possessed important characteristics of MSCs, including ASCs. However, LSCs' low proliferation and adipogenic differentiation behavior did not appear to account for enhanced tissue proliferation, but the secretome of lipomacytes could contribute to lipomatous neoplasm.


Assuntos
Tecido Adiposo , Lipoma , Humanos , Lipoma/metabolismo , Lipoma/patologia , Adipócitos/metabolismo , Células-Tronco , Diferenciação Celular , Adipogenia/fisiologia , Osteogênese , Células Cultivadas
10.
Stem Cells Transl Med ; 11(4): 394-406, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35274703

RESUMO

Adipose-derived stem or stromal cells (ASCs) possess promising potential in the fields of tissue engineering and regenerative medicine due to their secretory activity, their multilineage differentiation potential, their easy harvest, and their rich yield compared to other stem cell sources. After the first identification of ASCs in humans in 2001, the knowledge of their cell biology and cell characteristics have advanced, and respective therapeutic options were determined. Nowadays, ASC-based therapies are on the verge of translation into clinical practice. However, conflicting evidence emerged in recent years about the safety profile of ASC applications as they may induce tumor progression and invasion. Numerous in-vitro and in-vivo studies demonstrate a potential pro-oncogenic effect of ASCs on various cancer entities. This raises questions about the safety profile of ASCs and their broad handling and administration. However, these findings spark controversy as in clinical studies ASC application did not elevate tumor incidence rates, and other experimental studies reported an inhibitory effect of ASCs on different cancer cell types. This comprehensive review aims at providing up-to-date information about ASCs and cancer cell interactions, and their potential carcinogenesis and tumor tropism. The extracellular signaling activity of ASCs, the interaction of ASCs with the tumor microenvironment, and 3 major organ systems (the breast, the skin, and genitourinary system) will be presented with regard to cancer formation and progression.


Assuntos
Tecido Adiposo , Neoplasias , Diferenciação Celular , Humanos , Neoplasias/metabolismo , Células-Tronco/metabolismo , Células Estromais , Tropismo , Microambiente Tumoral
11.
Aesthetic Plast Surg ; 46(5): 2208-2217, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35075507

RESUMO

BACKGROUND: Silicone (gel) breast implants (SBI) are used world-wide for breast augmentation, and reconstruction or to correct breast deformities. They consist of two compounds: an elastomer silicone shell (envelope) and a silicone gel filler (core). Breast Implant Illness (BII) is a term used for women with SBI, who suffer from various of symptoms including myalgia, arthralgia, fatigue, fever, dry eyes and/or dry mouth (sicca), as well as cognitive disturbances, which are rated by these woman as response to SBI. The pathogenesis of these adverse effects as well as the histocompatibility and the SBI-cell interaction of silicone and its surrounding tissue (implant-host tissue interface) is a subject of current research. The main purpose of this review is to provide an overview of the current knowledge regarding the effects of silicone (gel and elastomer surfaces) of a SBI on different human cell types from experimental - in vitro - models. METHODS: A comprehensive research was conducted by two independent reviewers in March and July of 2020 in the PubMed, MEDLINE, and Cochrane databases. RESULTS: A number of 1328 articles on this topic were initially identified, of which 62 could be finally included an analysed in this review. CONCLUSION: SBI may lead to a physiologic pro-inflammatory and foreign body host response with fibrous encapsulation accompanied by a disturbed Th17/Treg balance and IL-17 production. No causal relationship is known for systemic symptoms and/or autoimmune outcomes in the context of BII. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Implante Mamário , Implantes de Mama , Mamoplastia , Humanos , Feminino , Implantes de Mama/efeitos adversos , Géis de Silicone/efeitos adversos , Interleucina-17 , Seguimentos , Implante Mamário/efeitos adversos , Mamoplastia/efeitos adversos , Elastômeros
12.
Life Sci ; 285: 120018, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624321

RESUMO

AIMS: Inflammation during wound healing is both essential and critical for restoring tissue integrity. Participating cells secrete soluble factors to regulate the inflammatory phase and to induce the adjacent regenerative processes. If pro-inflammatory signals are overexpressed, the wound stagnates in the inflammatory phase, which decelerates regular wound healing. The endocannabinoid system is ascribed great significance in maintenance of tissue homeostasis. It mediates several effects through the cannabinoid receptors CB1 and CB2. MAIN METHODS: In order to clarify the role of these receptors in wound healing, excisional wounds were created on wildtype and CB1 and CB2 knockout mice. The wound closure was analyzed over a period of 14 days, and cytokine concentrations of tissue homogenisates were measured by ELISA. MSCs were isolated from the animals' subcutaneous adipose tissue and analyzed for viability and differentiation capacity, in vitro. KEY FINDINGS: Deletion of CB2 increased Interleukin (IL)-6 and tumor necrosis factor (TNF)-α but did not affect tissue regeneration. In CB1-deficient animals, wound closure was delayed during early phases of healing, which was accompanied by increased concentrations of monocyte chemoattractant protein (MCP)-1 and TNF-α. CB1 and CB2 knockout MSCs presented altered viability and differentiation capacity compared to wildtype MSCs. The CB1-deficient MSCs released high levels of MCP-1 upon stimulation with TNF-α and IL-1ß. SIGNIFICANCE: The data indicate that both cannabinoid receptors regulate inflammation, and this study emphasizes the important role of CB1 in wound repair. Furthermore, our findings suggest that the secretome of CB1-deficient MSCs may contribute to the wound healing delay, in vivo.


Assuntos
Inflamação/genética , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Fenômenos Fisiológicos da Pele , Pele/lesões , Cicatrização/genética , Animais , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Front Physiol ; 12: 638448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366876

RESUMO

Background: Adipose-derived stem cells (ASCs) are multipotent mesenchymal stem cells characterized by their strong regenerative potential and low oxygen consumption. Macrophage migration inhibitory factor (MIF) is a multifunctional chemokine-like cytokine that is involved in tissue hypoxia. MIF is not only a major immunomodulator but also is highly expressed in adipose tissue such as subcutaneous adipose tissue of chronic non-healing wounds. In the present study, we investigated the effect of hypoxia on MIF in ASCs isolated from healthy versus inflamed adipose tissue. Methods: Human ASCs were harvested from 17 patients (11 healthy adipose tissue samples, six specimens from chronic non-healing wounds). ASCs were treated in a hypoxia chamber at <1% oxygen. ASC viability, MIF secretion as well as expression levels of MIF, its receptor CD74, hypoxia-inducible transcription factor-1α (HIF-1α) and activation of the AKT and ERK signaling pathways were analyzed. The effect of recombinant MIF on the viability of ASCs was determined. Finally, the effect of MIF on the viability and production capacity of ASCs to produce the inflammatory cytokines tumor necrosis factor (TNF), interleukin (IL)-6, and IL-1ß was determined upon treatment with recombinant MIF and/or a blocking MIF antibody. Results: Hypoxic treatment inhibited proliferation of ASCs derived from healthy or chronic non-healing wounds. ASCs from healthy adipose tissue samples were characterized by a low degree of MIF secretion during hypoxic challenge. In contrast, in ASCs from adipose tissue samples of chronic non-healing wounds, secretion and expression of MIF and CD74 expression were significantly elevated under hypoxia. This was accompanied by enhanced ERK signaling, while AKT signaling was not altered. Recombinant MIF did stimulate HIF-1α expression under hypoxia as well as AKT and ERK phosphorylation, while no effect on ASC viability was observed. Recombinant MIF significantly reduced the secretion of IL-1ß under hypoxia and normoxia, and neutralizing MIF-antibodies diminished TNF-α and IL-1ß release in hypoxic ASCs. Conclusions: Collectively, MIF did not affect the viability of ASCs from neither healthy donor site nor chronic wounds. Our results, however, suggest that MIF has an impact on the wound environment by modulating inflammatory factors such as IL-1ß.

14.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919377

RESUMO

Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.


Assuntos
Regeneração Óssea , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Humanos , Osteogênese
15.
J Tissue Eng Regen Med ; 15(1): 88-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459498

RESUMO

Adipose stem cells (ASCs) possess the capacity to proliferate, to differentiate into various cells types, and they are able to secrete growth factors. These characteristics are supposed to contribute to their potential for regenerative medicine approaches. In order to advance the therapeutic effects of ASCs, different modulatory procedures have been examined. In this context, the endocannabinoid system (ECS) represents an interesting possibility, since the increased availability of cannabinoids and the underlying molecular pathways of the ECS are of relevance for the development of new regenerative strategies. The effects of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated on ASC metabolic activity, quantified by PrestoBlue conversion, and cell numbers, evaluated by crystal violet staining. enzyme-linked immunosorbent assay (ELISA) measures were performed to determine cytokine release, and differentiation was assessed by specific labeling techniques. AEA increased the metabolic activity, while 2-AG decreased it in a concentration dependent manner. AEA significantly enhanced OilRed O staining after adipogenic differentiation by over 100%, and both compounds significantly increased cresolphthalein staining after osteogenic differentiation. By contrast, they did not affect sphere diameter or safranin O staining after chondrogenic differentiation. Both substances significantly increased the release of insulin-like growth factor-1 and hepatocyte growth factor, while only AEA enhanced transforming growth factor-ß secretion. The results demonstrated that stimulating the ECS exerted significant effects on the biology of ASCs. Exposure to endocannabinoids modulated viability, induced release of regenerative growth factors, and promoted adipogenic and osteogenic differentiation. Our findings could be of specific relevance in ASC based therapies for regenerative medicine.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Araquidônicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Células-Tronco/metabolismo , Células Cultivadas , Humanos
16.
J Neurosci Res ; 99(2): 545-560, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33070351

RESUMO

After peripheral nerve injury, Schwann cells (SCs) are crucially involved in several steps of the subsequent regenerative processes, such as the Wallerian degeneration. They promote lysis and phagocytosis of myelin, secrete numbers of neurotrophic factors and cytokines, and recruit macrophages for a biological debridement. However, nerve injuries with a defect size of >1 cm do not show proper tissue regeneration and require a surgical nerve gap reconstruction. To find a sufficient alternative to the current gold standard-the autologous nerve transplant-several cell-based therapies have been developed and were experimentally investigated. One approach aims on the use of adipose tissue stem cells (ASCs). These are multipotent mesenchymal stromal cells that can differentiate into multiple phenotypes along the mesodermal lineage, such as osteoblasts, chondrocytes, and myocytes. Furthermore, ASCs also possess neurotrophic features, that is, they secrete neurotrophic factors like the nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, ciliary neurotrophic factor, glial cell-derived neurotrophic factor, and artemin. They can also differentiate into the so-called Schwann cell-like cells (SCLCs). These cells share features with naturally occurring SCs, as they also promote nerve regeneration in the periphery. This review gives a comprehensive overview of the use of ASCs in peripheral nerve regeneration and peripheral nerve tissue engineering both in vitro and in vivo. While the sustainability of differentiation of ASCs to SCLCs in vivo is still questionable, ASCs used with different nerve conduits, such as hydrogels or silk fibers, have been shown to promote nerve regeneration.


Assuntos
Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/cirurgia , Coelhos , Ratos , Células de Schwann/fisiologia , Células de Schwann/transplante , Neuropatia Ciática/cirurgia , Neuropatia Ciática/terapia , Engenharia Tecidual , Alicerces Teciduais , Transplante Autólogo
17.
Pharmacol Rep ; 73(1): 143-153, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33026642

RESUMO

BACKGROUND: The inflammatory sequence is the first phase of wound healing. Macrophages (MPhs) and mesenchymal stromal cells (MSCs) respond to an inflammatory microenvironment by adapting their functional activity, which polarizes them into the pro-inflammatory phenotypes M1 and MSC1. Prolongation of the inflammatory phase results in the formation of chronic wounds. The endocannabinoid system (ECS) possesses immunomodulatory properties that may impede this cellular phenotypic switch. METHODS: We investigated the immunosuppressive influence of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on the M1 and MSC1 cytokine secretion. Lipopolysaccharides (LPS) were used as inflammagen to stimulate MPhs and MSCs. Both inflammatory phenotypes were co-exposed to AEA or 2-AG, the specific cannabinoid receptor CB2 agonist JWH-133 served as reference. The inflammatory responses were detected by CD80/163 immuno-labelling and by ELISA measures of secreted IL-6, IL-8, MIF, TNF-α, TGF-ß, and VEGF. RESULTS: M1 cells were found positive for CD80 expression and secreted less IL-6 and IL-8 than MSC1 cells, while both cell types produced similar amounts of MIF. TNF-α release was increased by M1, and growth factors were secreted by MSC1, only. Cannabinoid receptor ligands efficiently decreased the inflammatory response of M1, while their impact was less pronounced in MSC1. CONCLUSIONS: The ECS down-regulated the inflammatory responses of MPhs and MSCs by decreasing the cytokine release upon LPS treatment, while CB2 appeared to be of particular importance. Hence, stimulating the ECS by manipulation of endo- or use of exogenous cannabinoids in vivo may constitute a potent therapeutic option against inflammatory disorders.


Assuntos
Endocanabinoides , Terapia de Imunossupressão , Inflamação/imunologia , Inflamação/fisiopatologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Ácidos Araquidônicos/farmacologia , Antígeno B7-1/biossíntese , Canabinoides/farmacologia , Células Cultivadas , Citocinas/metabolismo , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos , Fenótipo , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB2 de Canabinoide/efeitos dos fármacos
18.
Materials (Basel) ; 13(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785204

RESUMO

Mesenchymal stem cells (MSCs) possess huge potential for regenerative medicine. For tissue engineering approaches, scaffolds and hydrogels are routinely used as extracellular matrix (ECM) carriers. The present study investigated the feasibility of using textile-reinforced hydrogels with adjustable porosity and elasticity as a versatile platform for soft tissue engineering. A warp-knitted poly (ethylene terephthalate) (PET) scaffold was developed and characterized with respect to morphology, porosity, and mechanics. The textile carrier was infiltrated with hydrogels and cells resulting in a fiber-reinforced matrix with adjustable biological as well as mechanical cues. Finally, the potential of this platform technology for regenerative medicine was tested on the example of fat tissue engineering. MSCs were seeded on the construct and exposed to adipogenic differentiation medium. Cell invasion was detected by two-photon microscopy, proliferation was measured by the PrestoBlue assay. Successful adipogenesis was demonstrated using Oil Red O staining as well as measurement of secreted adipokines. In conclusion, the given microenvironment featured optimal mechanical as well as biological properties for proliferation and differentiation of MSCs. Besides fat tissue, the textile-reinforced hydrogel system with adjustable mechanics could be a promising platform for future fabrication of versatile soft tissues, such as cartilage, tendon, or muscle.

19.
Plast Reconstr Surg ; 146(2): 309-320, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32740581

RESUMO

BACKGROUND: Adipose-derived stem cells are considered as candidate cells for regenerative plastic surgery. Measures to influence cellular properties and thereby direct their regenerative potential remain elusive. Hyperbaric oxygen therapy-the exposure to 100% oxygen at an increased atmospheric pressure-has been propagated as a noninvasive treatment for a multitude of indications and presents a potential option to condition cells for tissue-engineering purposes. The present study evaluates the effect of hyperbaric oxygen therapy on human adipose-derived stem cells. METHODS: Human adipose-derived stem cells from healthy donors were treated with hyperbaric oxygen therapy at 2 and 3 atm. Viability before and after each hyperbaric oxygen therapy, proliferation, expression of surface markers and protein contents of transforming growth factor (TGF)-ß, tumor necrosis factor-α, hepatocyte growth factor, and epithelial growth factor in the supernatants of treated adipose-derived stem cells were measured. Lastly, adipogenic, osteogenic, and chondrogenic differentiation with and without use of differentiation-inducing media (i.e., autodifferentiation) was examined. RESULTS: Hyperbaric oxygen therapy with 3 atm increased viability, proliferation, and CD34 expression and reduced the CD31/CD34/CD45 adipose-derived stem cell subset and endothelial progenitor cell population. TGF-ß levels were significantly decreased after two hyperbaric oxygen therapy sessions in the 2-atm group and decreased after three hyperbaric oxygen therapy sessions in the 3-atm group. Hepatocyte growth factor secretion remained unaltered in all groups. Although the osteogenic and chondrogenic differentiation were not influenced, adipogenic differentiation and autodifferentiation were significantly enhanced, with osteogenic autodifferentiation significantly alleviated by hyperbaric oxygen therapy with 3 atm. CONCLUSION: Hyperbaric oxygen therapy with 3 atm increases viability and proliferation of adipose-derived stem cells, alters marker expression and subpopulations, decreases TGF-ß secretion, and skews adipose-derived stem cells toward adipogenic differentiation. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Engenharia Celular/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/administração & dosagem , Tecido Adiposo/citologia , Adulto , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Pressão , Cultura Primária de Células/métodos
20.
Surg Technol Int ; 36: 41-47, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32243565

RESUMO

Skeletal muscle represents the largest mass of tissue in the body and is essential for motion and posture. Traumatic injury, tumor ablation, prolonged denervation or genetic defects lead to skeletal myopathies. The loss of muscle function or its regenerative properties often results in pain, deformity, and joint malfunction. The regenerative capacity of skeletal muscles depends on adult muscle stem cells, the so-called satellite cells; however, the population of these myogenic precursors, and thus their potential to restore large muscle tissue defects, is strongly limited. On the other hand, surgical treatment of skeletal muscle loss is hampered by the scarcity of functional replacement tissue. Only a few options currently exist to provide functional and aesthetic restoration of lost muscle tissues, other than free muscle flap transfer. While this reconstructive technique is a common practice, it involves the risk of significant donor-site morbidity. Therefore, alternative cells with the potential to regenerate muscle tissue need to be examined. Recently, many surgeons have studied the potential clinical application of mesenchymal stem cells (MSCs), which are an adult stem cell population that can undergo differentiation along the mesodermal lineage and secrete growth factors that can enhance tissue regeneration processes by promoting neovascularization. The regenerative potential of MSCs has been widely studied in vitro and in vivo in animal models. MSCs from adipose tissue as well as bone marrow have been shown to bear myogenic potential, which makes them ideal candidate stem cells for skeletal muscle tissue engineering applications. When compared to reconstructive procedures using autograft tissues, MSC therapy offers the potential of reducing or even eliminating donor-site morbidity. This review gives a comprehensive overview of the use of MSCs in in vitro muscle generation and in vivo muscle regeneration.


Assuntos
Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético , Regeneração , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA